Abstract: Double layer micro-channel heat sink (DLMCHS) has been widely used in various electronic devices;however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overall stability. In this paper, two optimized designs of DLMCHS with cutting baffles on top and bottom layers are presented based on the traditional DLMCHS. The heat transfer and thermal stress performance are numerically analyzed and compared with the traditional DLMCHS. The results indicate that cutting baffles of micro-channels remarkably improves heat transfer and thermal stress performance. The optimized design with cutting baffles on the bottom layer decreases thermal strain but deteriorates heat transfer performance. The model with cutting baffles on the top layer has better combined thermal strain and heat transfer performance, whichreduces thermal strain by about 1.5 times and enhances heat transfer by about 26.5%. For the design with cutting baffles on the top board, adding metal foam in the inlet collector can decrease the total minimum thermal strain by 51.4% and maximum temperature by 1.4 K, and increase the Nusselt number by 15%. These results indicatethat DLMCHS with cutting baffles on the top layer has great potential for thermal managements on electronic devices with high power density。